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ABSTRACT

Minimizing energy consumption in residential buildings
using passive solar strategies almost always calls for the
efficient use of massive building materials combined with
solar gain control and adequate insulation. Using comput-
erized simulation tools to understand the interactions among
all the elements facilitates designing low-energy houses.
Finally, the design team must feel confident that these tools
are providing realistic results.

The design team for the residential building described in this
paper relied on computerized design tools to determine
building envelope features that would maximize the energy
performance [1]. Orientation, overhang dimensions, insula-
tion amounts, window characteristics and other strategies
were analyzed to optimize performance in the Pueblo, Colo-
rado, climate. After construction, the actual performance of
the house was monitored using both short-term and long-
term monitoring approaches to verify the simulation results
and document performance.

Calibrated computer simulations showed that this house
consumes 56% less energy than would a similar theoretical
house constructed to meet the minimum residential energy
code requirements. This paper discusses this high-mass
house and compares the expected energy performance,
based on the computer simulations, versus actual energy
performance.

1. TIERRA CONCRETE HOUSE

Tierra Concrete Homes constructed the concrete house de-
scribed in this paper near Pueblo, Colorado, where there are
5413 (3007) heating degree-days, 973 (540) cooling degree-

days (65°F (18°C) base) and the average daily solar radia-
tion incident on an unshaded horizontal surface is 1570
Btu/ft*/day (17835 kJ/m*/day) [2]. The house is an 1870-ft*
(174-m?) single-story, three-bedroom ranch. The entire
exterior and most of the interior walls are pre-cast concrete.
Two inches (5 cm) of polyisocyanurate insulation with an
Exterior Insulation and Finish System (EIFS ) covers the
exterior walls.

1.1 Construction Method

Most of the exterior and interior walls were poured off site
and transported to the building location, where a crane lifted
them into place. The pre-cast walls included openings for
doors, windows, electrical conduit, and outlet boxes. All
interior wall surfaces were finished to look and feel like
drywall. The roof is constructed with raised-heel trusses,
drywall ceiling, and blown-in fiberglass insulation.

1.2 Construction Costs

At $75/ft* (8807/m?), excluding land, the cost of this passive
solar concrete home is similar to that of other custom homes
in the area, which cost $75 to $82/ft* ($807 to $883/m?).
The costs of insulation (wall and slab perimeter) and the
concrete walls are higher than that of typical wood-frame
construction. However, significant savings are achieved
through reduced construction time, limited use of drywall,
and no central heating or cooling systems. A thermostati-
cally controlled propane-fired stove provides heat for the
master suite and a thermostatically controlled propane fire-
place heats the main portion of the house. These units re-
placed the conventional heating, ventilation, and air-
conditioning (HVAC) system and related ductwork that is
found in most single-family houses.



2. PREDICTED PERFORMANCE

An hourly building-energy simulation tool was used during
the design phase to optimize energy consumption [3]. All
design decisions made to improve the house energy per-
formance were compared to a base-case model that com-
plied with the 1996 Home Energy Rating System (HERS)
and the 1995 Model Energy Code (MEC) [4,5].

Four house models are used for comparison in this paper:
the base-case , pre-construction , as-built, and calibrated.
The base-case house was modeled as slab-on-grade, wood-
frame construction with a footprint equal to the actual Tierra
house. This base-case house was solar neutral (equal glaz-
ing areas on all orientations) to evaluate the impact of pas-
sive solar technologies.

A pre-construction model represented the optimized design.
All interior load schedules and temperature setpoints were
assumed the same in the base-case and pre-construction
models.

The as-built model reflects changes to the pre-construction
model as a result of differences incurred during construc-
tion. The as-built model was calibrated to more closely
match measured data resulting in the calibrated model.

Table 1 provides envelope characteristics for the base-case
house and Tierra as-built house. Figure 1 shows the simu-
lated base-case and pre-construction heating and cooling
loads. The total load predicted for the pre-construction de-
sign is 69.5% lower than the base-case house. Pre-
construction model heating and cooling loads are 66% and
90% less than the base case, respectively. The minimized
cooling loads eliminated the need for a cooling system.

TABLE 1: BASE CASE AND TIERRA DESIGN
SPECIFICATIONS

Component Base Case Tierra
Infiltration 0.67 ACH 0.2 ACH
Wall R-Value | 17.2 ft-°F-hr/Btu | 14 ft-°F-hr/Btu
(3.0 m*K/W) (2.5 m*K/W)
Roof R-Value | 35.2 ft-°F-hr/Btu | 38 ft*-°F-hr/Btu
(6.2 m*K/W) (6.7 m*K/W)
Floor R-Value | 4.5 ft*-°F-hr/Btu | 8 ft*°F-hr/Btu
(0.8 m*K/W) (1.4 m*K/W)
Window U- 0.4 Btw/ft"°F-hr | 0.38 Btu/ft*°F-hr
value (2.3 W/m*K) (2.2 W/m*K)
Window SC 0.7/0.89 0.8
(summer/
winter)
Internal Mass | 8 Ib/ft° 100 Ib/ft*
(39 kg/m?) (488 kg/m?)
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Fig. 1: Base-case and pre-construction model energy load
comparison.

3. DESIGN CHARACTERISTICS

The concrete construction with exterior insulation resulted
in extremely air-tight construction (0.2 ACH)[6]. This in-
filtration rate translates to about 62 cfm (29 L/s), which sat-
isfies residential construction ventilation requirements [7].

The house design is engineered to maximize winter solar
gain. A long east-west axis allows 80% of the glazing to be
on the south side of the house. The high shading coefficient
(SC) glazing maximizes the solar gains that enter the house
during the winter. Overhangs were sized to block unwanted
summer solar gains.

Lighting loads were reduced through extensive use of day-
lighting and installation of compact fluorescent fixtures. A
clerestory with an east/west axis brings daylighting deep
into the northern half of the house.

The use of daylighting, energy-efficient lighting, and over-
hangs has the added benefit of reducing summer cooling
loads. Nighttime natural ventilation pre-cools the interior
mass (concrete walls and floor) to further offset cooling
loads. Opened clerestory windows promote the stack effect
throughout the house to exhaust hot air and bring in cool
outdoor air at night.

The thermal capacitance of the concrete walls and floor
stores heat during the day in the winter and releases it at
night. In summer, nighttime ventilation cools the mass.

The mass remains cool throughout the day because the en-
gineered overhangs minimize the solar gains. The ability of
concrete to store heat or remain cool minimizes equipment
loads during both heating and cooling seasons.



4. POST CONSTRUCTION PERFORMANCE
VERIFICATION

Short-Term Energy Monitoring (STEM) tests were con-
ducted after construction was completed [8,9]. After six
days of testing, the building’s thermal parameters were
identified. These parameters were then used to extrapolate
long-term energy performance. Test data were collected
while the house was unoccupied to eliminate occupant-
behavior effects.

STEM test results indicated that the actual solar gains were
27% less than that predicted by the pre-construction simula-
tion. It was determined that this difference was primarily
due to the glazing area in the as-built house being 7.6% less
than in the pre-construction design, and that window screens
had a much larger effect on solar gains than originally esti-
mated. Adjusting the glazing area and adding “screens”
with a SC of 0.70 to all windows calibrated the pre-
construction model results to more closely match the meas-
ured short-term performance (Figure 2).
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Fig. 2: Modeled and measured indoor temperatures at the
end of November and beginning of December, 1996.

The calibrated model predicted annual heating and cooling
loads of 22.40 MMBtu (6.57 MW-hr) and 0.04 MMBtu
(11.7 kW-hr), respectively. This is a 56% savings compared
to the base-case model, less than the 69.5% that was origi-
nally anticipated from the pre-construction design analysis.

Figure 3 shows where the calibrated model identified heat
loss sources. These results show that heat loss through the
slab is a primary concern, followed by heat loss through the
windows and walls.
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Fig. 3: Segregated heat loss for calibrated model.

The Tierra house was designed with perimeter slab insula-
tion, as is conventional in the residential sector. Perform-
ance monitoring indicates that the entire slab should have
been insulated. As improvements are made in other areas of
residential building design and construction, heat loss paths
that in the past were of minor concern become primary is-
sues to reaching energy efficiency goals. The large percent-
age of total building heat loss through the slab in the Tierra
house is an example of this situation.

The calibrated model also revealed that 30.3 MMBtu/year
(8.9 MWh) of the heat gain is from passive solar gains (Fig-
ure 4). This accounts for 50% of the total heat provided to
the house.
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Fig. 4: Calibrated model heat sources.

5. DATA INTERPRETATION

Figure 5 shows indoor and outdoor temperatures, with the
heating system off, during the coldest month of the long-
term monitoring period. During four consecutive days of
subzero outdoor temperatures (—18°C), the interior space
temperature only dropped to about 48°F (9°C) even though
there was no mechanical heat during this period. Surviving



this strenuous test shows that the passive solar heating de-
sign of the house is freeze resistant, making the house re-
sistant to disaster in a prolonged utility outage. The ability
to minimize exposure to natural disasters limits insurer’s
liability for passive solar houses and is a side-benefit of pas-
sive solar design [10].
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Fig. 5: January inside and outside temperatures with heating
system off.

Long-term data collected while the house was unoccupied
only partially demonstrates how the house can maintain
comfortable summer indoor temperatures. The passive solar
design depends on nighttime ventilation to pre-cool the
massive concrete walls and floors. In the morning, the oc-
cupant closes all windows to prevent hot daytime air from
entering the house. The cool walls and floors maintain com-
fort throughout the day. During the summer monitoring
period, without the nighttime venting to precool the mass,
the indoor temperature was above the normal comfort level
but never exceeded 88°F (31°C) when outdoor temperatures
were at their highest in the monitoring period, near 110°F
(43°C). Using the calibrated model, the predicted indoor
temperature when nighttime venting occurred was estimated
to be about 10°F (6°C) cooler during this same period and
never exceeded 78°F (26°C).(Figure 6)
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Fig. 6: July inside and outside temperatures and predicted
inside temperature if nighttime venting is used.

6. IMPROVING THE PERFORMANCE

The calibrated simulation of the Tierra house was revisited
to learn what design changes were necessary to achieve 70%
energy savings while accounting for the lower solar gains.

It was found that significant improvements could be
achieved by increasing the wall and floor insulation. Simu-
lations show that adding 1 in (2.5 cm) of wall insulation for
a total of 3 in (7.5 cm) (R-21 ft*-°F-hr/Btu [3.7 m*K/W])
and insulating the entire slab with 2 in (5 cm) of foam insu-
lation (R-10 ft*-°F-hr/Btu [1.8 m*K/W]) achieves the goal.

The improved design has a total heating load of 14.7
MMBtu (4.3 MW-hr ) per year and a cooling load of 0.3
MMBtu (82.1 kW-hr ) per year, 70.4% less than the base
case. Figure 7 shows that the two largest heat losses are
through the windows and floor. Using windows with lower
U-values can reduce window heat loss; however, this re-
duces the SC resulting in lower solar gains. Simulations
showed that the windows with the specified U-value and SC
provided the smallest heat load based on this trade-off. The
ground heat loss could be reduced with increased insulation
levels, but this might not be practical or cost effective.
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Fig. 7: Primary heat loss paths in improved design simula-
tion.

7. CONCLUSIONS

In this climate, incorporating massive building materials is
an effective strategy for ensuring smaller diurnal indoor
temperature swings in low-energy residential building de-
signs. The mass can store passive solar gains during the
heating season and the pre-cooled mass can maintain com-
fortable indoor conditions during the cooling season.

Massive building construction most effectively improves
comfort during the cooling season only when the mass can
be pre-cooled at night. If the mass cannot be pre-cooled,
then it is likely that the indoor temperatures will be higher
than a comfortable level during the summer. It is also im-



portant that the mass be located within the conditioned
space and insulated on the exterior.

The performance of passive solar buildings is sensitive to
the amount of solar energy transmitted into the building. In
this study the transmitted solar radiation was overestimated,
and the slab heat loss was underestimated, resulting in an
optimized wall insulation of 2 in (5cm) (R-14 ft*-°F-hr/Btu
[2.5 m*K/W]). Good information on the shading coeffi-
cient of screens is generally not available. Also, accurate
modeling of ground coupled heat transfer is difficult in all
of the current generation of whole building simulation pro-
grams. Improvements in these two modeling areas would
help in better optimizing very low energy buildings.

The Tierra house described in this paper was designed to
rely on passive heating and cooling strategies for meeting all
space conditioning needs. As a result, no conventional resi-
dential heating or cooling system was installed. The as-built
design consumes 56% less energy than a similar base-case
house designed to meet the minimum HERS/MEC require-
ments. Had the effects of window screens on reducing solar
gains been properly modeled resulting in more wall and
floor insulation being installed, the Tierra house could have
performed 70% better than the base-case house.
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